Расчет тепловой мощности радиаторов отопления - Relax-Nk.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Расчет тепловой мощности радиаторов отопления

Расчет тепловой мощности радиаторов

Как уже неоднократно упоминалось, что тепло, передаваемое радиаторами воздуху помещения, должно компенсировать теплопотери помещения и в упрощенном виде это соответствует тому, что на каждые 10 м² площади помещения нужно устанавливать радиаторы тепловой мощностью не менее 1 кВт. На практике, этот показатель увеличивают еще на 15%, т. е. полученную мощность радиаторов умножают на коэффициент 1,15. Существуют более точные расчеты необходимой мощности радиаторов, которыми руководствуются специалисты, но для грубой оценки и предложенного метода достаточно. При этом методе расчета радиаторы могут оказаться чуть большей мощности, чем необходимо, но зато возрастет качество отопительной системы, при котором возможна более точная настройка и низкотемпературный режим отопления.

При покупке радиаторов в магазинах в паспортах технических характеристик тепловая мощность может быть указана в киловаттах или по расходу теплоносителя. Если указан расход теплоносителя, то мы уже знаем, что расход теплоносителя равный 1 л/мин примерно соответствует мощности в 1 кВт.

Обычно в паспорте отопительного прибора указаны размеры радиатора в миллиметрах. В настоящее время в продаже радиаторы бывают высотой 60, 50, 40, 30 и 20 см, приборы высотой 20 см и менее называют плинтусными. Высота 60 см — традиционная высота старых чугунных радиаторов, и новые радиаторы высотой 60 см хороши для их простой замены. Сейчас чаще используют радиаторы высотой 50 см, так как в архитектуре все чаще используются высокие окна и низкие подоконники, а при установке радиатора под окно нужно выдержать нормативный зазор между подоконной доской и радиатором не менее 5 см, а расстояние между полом и радиатором должно быть не менее 6 см. Низкие радиаторы выглядят компактнее, но при одинаковой мощности будут длиннее, а размеры помещения не всегда позволяют установить более длинные радиаторы.

В паспорте радиатора рядом с мощностью, например, 1905 Вт, указываются цифры расчетного перепада температуры, например, 70/55. Это означает, что при охлаждении с 70 до 55 градусов радиатор со своей поверхности отдает 1905 Вт тепловой мощности. Однако многие продавцы указывают мощность своих радиаторов только для перепада 90/70. При использовании таких радиаторов для среднетемпературных систем отопления с перепадом 70/55 мощность теплоотдачи такого радиатора будет меньше заявленного в паспорте. Поэтому при выборе радиаторов для средне- и низкотемпературных (55/45) систем отопления их фактическую мощность нужно пересчитывать.

Мощность отопительного прибора определяется по формуле:

Q = k×A×ΔT , где
k — коэффициент теплопередачи отопительного прибора, Вт/м² °С;
А — площадь теплопередающей поверхности отопительного прибора, м²;
ΔT — температурный напор, °С (рис. 82).

Из паспортных данных на радиатор нам известна мощность радиатора (Q) и температурный напор (ΔT), соответствующий данной мощности. Подставляя эти значения в формулу, определяем произведение k×A. Теперь известны все составляющие формулы, подставляя значение ΔT равное 50 или 30°С, соответствующее средне- и низкотемпературным системам отопления, находим мощность данного радиатора для этих систем. Более того, мощность радиаторов можно пересчитать на свой температурный напор (ΔT), если вас по каким-либо причинам не устраивают нормативные величины 50 и 30°С, используя для этого формулу на рисунке 82.

Например, нам нужно выбрать радиаторы для комнаты площадью 16 м². Для отопления такой площади нужны радиаторы мощностью 1,6 кВт, умножаем это число на коэффициент 1,15 и получаем 1,84 кВт. Приходим в магазин и выбираем радиатор подходящий нам по размеру и мощности, предположим, что мы находим такой отопительный прибор, в паспортных данных которого обозначена мощность 1905 Вт (1,9 кВт). Изучая паспортные данные, находим, что указанную мощность этот радиатор может выдать только при температурном напоре 60°С (90/70). Следовательно, при проектировании низкотемпературной системы отопления (ΔT=30°С) с качественной регулировкой температуры теплоносителя, например, с применением трехходовых смесителей в режиме (55/45), мощность предлагаемого радиатора нужно пересчитать. По формуле или паспортным данным находим величину произведения k×A = 31,75 Вт/°С и вставляем обновленные данные в формулу определения мощности. Q = k×A×ΔT = 31,75×30 = 956 Вт, что составляет примерно 50% от нужной нам мощности. Дальше можно поступить несколькими способами: купить вместо одного два радиатора; рассчитать мощность одной секции радиатора и на основании этого расчета подобрать радиатор с нужным количеством секций; поискать другие радиаторы, удовлетворяющие нашим требованиям. Необходимо добавить, что при покупке радиаторов для низкотемпературных отопительных систем (ΔT = 30°С), в паспортных данных которых указан температурный напор 60°С, результат всегда будет один — количество секций радиаторов должно быть удвоено. В других случаях, когда в паспорте указаны другие температурные напоры или к расчетному температурному напору у вас свои требования, мощность радиаторов нужно пересчитать.

На отдачу тепла от радиаторов в помещение влияют также место размещения радиатора в комнате и способ его подключения к трубопроводам.

Радиаторы размещают прежде всего под световыми проемами. Какие бы сверхсовременные стеклопакеты не стояли в оконных рамах, окно — это всегда место наибольших теплопотерь. Размещенный под окном радиатор нагревает воздух вокруг себя. Поднимаясь вверх, горячий воздух создает перед окном тепловую завесу, препятствующую распространению холода от окна. Кроме того, холодный воздух от окна тут же перемешивается с теплым воздухом, поднимающимся от радиатора, и усиливает конвекцию во всем помещении, способствуя более быстрому прогреванию всего воздуха помещения. Желательно, чтобы радиаторная «гармошка» была длиной во всю ширину окна, в крайнем случае, не менее 50% длины проемов. Вертикальные оси оконного проема и радиатора совмещают, допустимое отклонение не более 50 мм. В угловых комнатах могут быть размещены дополнительные радиаторы вдоль глухих наружных стен по возможности ближе к наружному углу. При применении стояковых систем отопления стояки нужно размещать в углах помещения, особенно важно разместить стояки в наружных углах угловых комнат. Дело здесь в том, что наружные углы домов подвергаются атаке холодного воздуха, в отличие от стен, с двух сторон. Разместив отопительные стояки в углах, вы обеспечиваете их прогрев с внутренней стороны и резко снижаете вероятность отсыревания и почернения материала стен — развития в углах грибковых порослей.

Отопительные приборы размещают так, чтобы были обеспечены их осмотр, очистка и ремонт. Если применяется ограждение (экран) или декорирование приборов, то в расчет тепловой мощности радиаторов нужно внести коррективы. Мощность приобретаемых радиаторов должна быть рассчитана с поправочным коэффициентом (рис. 83).

рис.83. Изменение мощности теплоотдачи радиаторов в зависимости от способа их установки

Присоединение труб к радиаторам может быть с одной стороны (одностороннее) и с противоположных сторон (разностороннее). При присоединении труб с разных сторон возрастает теплопередача приборов, однако конструктивно рациональнее делать одностороннее присоединение труб. С разных сторон присоединяют радиаторы при числе секций более 20, а также при числе приборов «на сцепке» более одного.

Тепловой поток радиаторов зависит от расположения мест подачи и отвода из них теплоносителя. Теплопередача возрастает при подаче теплоносителя в верхнюю часть и отводе его из нижней части прибора (направление движения сверху вниз) и понижается при направлении движения снизу вверх (рис. 84). При установке отопительных приборов в несколько ярусов по высоте (по этажам) рекомендуется обеспечивать последовательное движение теплоносителя сверху вниз.

рис.84. Изменение мощности теплоотдачи радиаторов в зависимости от способа присоединения к ним труб

Индивидуальное регулирование теплопередачи отопительных приборов может быть ручным и автоматическим. Термостатные вентили регулируют пропуск теплоносителя таким образом, что достигают наилучших показателей теплообмена на всех участках теплового прибора.

Как рассчитать мощность радиатора отопления – делаем расчет мощности правильно

Когда проектируется система теплоснабжения для частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить требуемое количество секций для каждой комнаты и подсобных помещений. В статье приводится несколько несложных вариантов вычислений.

Читайте также:  Плюсы и минусы центрального пылесоса

Особенности проведения расчетов

Многих владельцев недвижимости волнует, что неправильно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в морозы в доме будет холодно, а в теплую погоду придется держать нараспашку форточки целый день и таким образом отапливать улицу (детальнее: “Расчет мощности батарей отопления – как рассчитать самому”).

Однако имеется понятие, которое называется температурный график. Благодаря чему температура теплоносителя в отопительной системе меняется в зависимости от погоды на улице. По мере того, как будет расти температура воздуха на улице, повышается теплоотдача каждой из секций батареи. А раз так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.

Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоагрегата или отопления с применением тепловых насосов они не должны волноваться о том, какую температуру имеет теплоноситель, циркулирующий в контуре отопительной конструкции.

Созданное с применением новейших технологий тепловое оборудование позволяет управлять им при помощи термостатов и корректировать мощность батарей в соответствии с потребностями. Наличие современного котла не требует контроля над температурой теплоносителя, но, чтобы установить радиаторы отопления расчет мощности все равно потребуется.

Порядок расчета мощности радиаторов отопления

Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием как тепловая мощность. Вариантов как рассчитать мощность радиатора отопления существует несколько. При этом следует отметить, что у приборов от известных и хорошо себя зарекомендовавших производителей данный параметр всегда указывается в прилагаемых к ним документах (прочитайте также: “Как рассчитать отопление в доме правильно”).

У таких агрегатов, как электрический конвектор, тепловентилятор, масляный радиатор или инфракрасная керамическая панель тепловая мощность соответствует их электрической мощности (читайте также: “Что выбрать конвектор или масляный радиатор”). При создании системы отопления, где используется жидкий теплоноситель, не обойтись без батарей.

У чугунных, алюминиевых или биметаллических отопительных приборов мощность одной секции радиатора отопления составляет от 140 до 220 ватт. Усредненным значением считается значение 200 ватт, которое батарея отдает при разнице температур между теплоносителем и воздухом в помещении, равным 70 градусам. Читайте также: “Расчет количества секций биметаллических радиаторов”.

Чтобы выполнить расчет биметаллических отопительных радиаторов или чугунных батарей, исходя из тепловой мощности, необходимо разделить требуемое количество тепла на величину 0,2 КВт. В результате будет получено количество секций, которые нужно приобрести, чтобы обеспечить обогрев комнаты (детальнее: “Правильный расчет тепловой мощности системы отопления по площади помещения”).

Если чугунные радиаторы (см. фото) не имеют промывочных кранов специалисты рекомендуют принимать в расчет 130-150 ватт на каждую секцию, учитывая мощность 1 секции чугунного радиатора. Даже когда они первоначально отдают тепла больше, чем требуется, появившиеся в них загрязнения понизят теплоотдачу.

Как показала практика, батареи желательно монтировать с запасом около 20%. Дело в том, что при наступлении экстремальных холодов чрезмерной жары в доме не будет. Также поможет бороться с повышенной теплоотдачей дроссель на подводке. Покупка лишних нескольких секций и регулятора не сильно отразится на семейном бюджете, а тепло в доме в морозы будет обеспечено.

Необходимая величина тепловой мощности радиатора

При расчете отопительной батареи непременно нужно знать требуемую тепловую мощность, чтобы в доме было комфортно жить. Как рассчитать мощность радиатора отопления или других отопительных приборов для теплоснабжения квартиры или дома, интересует многих потребителей.

  1. Способ согласно СНиП предполагает, что на один «квадрат» площади требуется 100 ватт.

    Но в данном случае следует учитывать ряд нюансов:

    – теплопотери зависят от качества теплоизоляции. Например, для обогрева энергоэффективного дома, оборудованного системой рекуперации тепла со стенами, сделанными из сип-панелей, потребуется тепловая мощность меньше, чем в 2 раза;
    – создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2,5-2,7 метра, а ведь этот параметр может равняться 3 или 3,5 метра;
    – этот вариант, позволяющий рассчитать мощность радиатора отопления и теплоотдачу, верен только при условии примерной температуры 20°C в квартире и на улице – 20°C. Подобная картина типична для населенных пунктов, расположенных в европейской части России. Если дом находится в Якутии, тепла потребуется гораздо больше.

  2. Способ расчета, исходя из объема, не считается сложным. Для каждого кубометра помещения требуется 40 ватт тепловой мощности. Если размеры комнаты составляют 3х5 метра, а высота потолка 3 метра, тогда потребуется 3х5х3х40 = 1800 ватт тепла. И хотя погрешности, связанные с высотой помещений в этом варианте расчетов устранены, он все еще не является точным.
  3. Уточненный способ расчета по объему с учетом большего количества переменных дает более реальный результат. Базовым значением остаются все те же 40 ватт на один кубометр объема. Читайте также: “Как сделать расчет радиаторов отопления на квадратный метр – правила и способы расчета количества секций”.

    Когда производится уточненный расчет тепловой мощности радиатора и требуемой величины теплоотдачи, следует учитывать, что:

    – одна дверь наружу отнимает 200 ватт, а каждое окно – 100 ватт;
    – если квартира угловая или торцевая, применяется поправочный коэффициент 1,1 – 1,3 в зависимости от вида материала стен и их толщины;
    – для частных домовладений коэффициент составляет 1,5;
    – для южных регионов берут коэффициент 0,7 – 0,9, а для Якутии и Чукотки применяют поправку от 1,5 до 2.

В качестве примера для проведения расчета взята угловая комната с одним окном и дверью в частном кирпичном доме размером 3х5 метров с трехметровым потолком на севере России. Средняя температура за окном зимой в январе составляет – 30,4°C. Читайте также: “Как сделать расчет радиаторов отопления правильно – точный способ”.

Порядок вычислений следующий:

  • определяют объем помещения и требуемую мощность – 3х5х3х40 = 1800 ватт;
  • окно и дверь увеличивают результат на 300 ватт, итого получают 2100 ватт;
  • с учетом углового расположения и того, что дом частный будет 2100х1,3х1,5 = 4095 ватт;
  • прежний итог умножают на региональный коэффициент 4095х1,7 и получают 6962 ватт.

Видео о выборе радиаторов отопления с расчетом мощности:

Калькулятор расчета количества секций радиаторов отопления

В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.

В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.

Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.

Калькулятор расчета количества секций радиаторов отопления

Некоторые разъяснения по работе с калькулятором

Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.

В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.

— Площадь помещения – хозяевам известна.

— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.

— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.

— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.

— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.

— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.

— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.

— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.

— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.

— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.

— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.

В расчетное значение уже заложен необходимый эксплуатационный резерв.

Что необходимо еще знать про радиаторы отопления?

При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным , алюминиевым и биметаллическим радиаторам отопления.

Калькулятор расчета количества секций радиаторов

Информация по назначению калькулятора

К алькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.

В опросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.

К аждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.

Н есмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии. Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий. В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.

И х классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:

  • Стальные
  • Чугунные
  • Алюминиевые
  • Биметаллические

С тальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы. Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя. К недостаткам относится низкая стойкость против коррозии после слива воды.

И зделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.

Р оссийские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.

Т рубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.

Т рубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар. По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом. Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.

А люминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные. Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя. Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.

Р адиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.

Э кструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.

А люминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес. Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные. По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.

Ч угунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло. Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.

Б иметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью. При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.

Общие сведения по результатам расчетов

  • К оличество секций радиатора – Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
  • К ол-во тепла, необходимое для обогрева – Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
  • К ол-во тепла, выделяемое радиатором – Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
  • К ол-во тепла, выделяемое одной секцией – Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.

Калькулятор работает в тестовом режиме.

Расчет тепловой мощности радиаторов

Как уже неоднократно упоминалось, что тепло, передаваемое радиаторами воздуху помещения, должно компенсировать теплопотери помещения и в упрощенном виде это соответствует тому, что на каждые 10 м² площади помещения нужно устанавливать радиаторы тепловой мощностью не менее 1 кВт. На практике, этот показатель увеличивают еще на 15%, т. е. полученную мощность радиаторов умножают на коэффициент 1,15. Существуют более точные расчеты необходимой мощности радиаторов, которыми руководствуются специалисты, но для грубой оценки и предложенного метода достаточно. При этом методе расчета радиаторы могут оказаться чуть большей мощности, чем необходимо, но зато возрастет качество отопительной системы, при котором возможна более точная настройка и низкотемпературный режим отопления.

При покупке радиаторов в магазинах в паспортах технических характеристик тепловая мощность может быть указана в киловаттах или по расходу теплоносителя. Если указан расход теплоносителя, то мы уже знаем, что расход теплоносителя равный 1 л/мин примерно соответствует мощности в 1 кВт.

Обычно в паспорте отопительного прибора указаны размеры радиатора в миллиметрах. В настоящее время в продаже радиаторы бывают высотой 60, 50, 40, 30 и 20 см, приборы высотой 20 см и менее называют плинтусными. Высота 60 см — традиционная высота старых чугунных радиаторов, и новые радиаторы высотой 60 см хороши для их простой замены. Сейчас чаще используют радиаторы высотой 50 см, так как в архитектуре все чаще используются высокие окна и низкие подоконники, а при установке радиатора под окно нужно выдержать нормативный зазор между подоконной доской и радиатором не менее 5 см, а расстояние между полом и радиатором должно быть не менее 6 см. Низкие радиаторы выглядят компактнее, но при одинаковой мощности будут длиннее, а размеры помещения не всегда позволяют установить более длинные радиаторы.

В паспорте радиатора рядом с мощностью, например, 1905 Вт, указываются цифры расчетного перепада температуры, например, 70/55. Это означает, что при охлаждении с 70 до 55 градусов радиатор со своей поверхности отдает 1905 Вт тепловой мощности. Однако многие продавцы указывают мощность своих радиаторов только для перепада 90/70. При использовании таких радиаторов для среднетемпературных систем отопления с перепадом 70/55 мощность теплоотдачи такого радиатора будет меньше заявленного в паспорте. Поэтому при выборе радиаторов для средне- и низкотемпературных (55/45) систем отопления их фактическую мощность нужно пересчитывать.

Мощность отопительного прибора определяется по формуле:

Q = k×A×ΔT , где
k — коэффициент теплопередачи отопительного прибора, Вт/м² °С;
А — площадь теплопередающей поверхности отопительного прибора, м²;
ΔT — температурный напор, °С (рис. 82).

Из паспортных данных на радиатор нам известна мощность радиатора (Q) и температурный напор (ΔT), соответствующий данной мощности. Подставляя эти значения в формулу, определяем произведение k×A. Теперь известны все составляющие формулы, подставляя значение ΔT равное 50 или 30°С, соответствующее средне- и низкотемпературным системам отопления, находим мощность данного радиатора для этих систем. Более того, мощность радиаторов можно пересчитать на свой температурный напор (ΔT), если вас по каким-либо причинам не устраивают нормативные величины 50 и 30°С, используя для этого формулу на рисунке 82.

Например, нам нужно выбрать радиаторы для комнаты площадью 16 м². Для отопления такой площади нужны радиаторы мощностью 1,6 кВт, умножаем это число на коэффициент 1,15 и получаем 1,84 кВт. Приходим в магазин и выбираем радиатор подходящий нам по размеру и мощности, предположим, что мы находим такой отопительный прибор, в паспортных данных которого обозначена мощность 1905 Вт (1,9 кВт). Изучая паспортные данные, находим, что указанную мощность этот радиатор может выдать только при температурном напоре 60°С (90/70). Следовательно, при проектировании низкотемпературной системы отопления (ΔT=30°С) с качественной регулировкой температуры теплоносителя, например, с применением трехходовых смесителей в режиме (55/45), мощность предлагаемого радиатора нужно пересчитать. По формуле или паспортным данным находим величину произведения k×A = 31,75 Вт/°С и вставляем обновленные данные в формулу определения мощности. Q = k×A×ΔT = 31,75×30 = 956 Вт, что составляет примерно 50% от нужной нам мощности. Дальше можно поступить несколькими способами: купить вместо одного два радиатора; рассчитать мощность одной секции радиатора и на основании этого расчета подобрать радиатор с нужным количеством секций; поискать другие радиаторы, удовлетворяющие нашим требованиям. Необходимо добавить, что при покупке радиаторов для низкотемпературных отопительных систем (ΔT = 30°С), в паспортных данных которых указан температурный напор 60°С, результат всегда будет один — количество секций радиаторов должно быть удвоено. В других случаях, когда в паспорте указаны другие температурные напоры или к расчетному температурному напору у вас свои требования, мощность радиаторов нужно пересчитать.

На отдачу тепла от радиаторов в помещение влияют также место размещения радиатора в комнате и способ его подключения к трубопроводам.

Радиаторы размещают прежде всего под световыми проемами. Какие бы сверхсовременные стеклопакеты не стояли в оконных рамах, окно — это всегда место наибольших теплопотерь. Размещенный под окном радиатор нагревает воздух вокруг себя. Поднимаясь вверх, горячий воздух создает перед окном тепловую завесу, препятствующую распространению холода от окна. Кроме того, холодный воздух от окна тут же перемешивается с теплым воздухом, поднимающимся от радиатора, и усиливает конвекцию во всем помещении, способствуя более быстрому прогреванию всего воздуха помещения. Желательно, чтобы радиаторная «гармошка» была длиной во всю ширину окна, в крайнем случае, не менее 50% длины проемов. Вертикальные оси оконного проема и радиатора совмещают, допустимое отклонение не более 50 мм. В угловых комнатах могут быть размещены дополнительные радиаторы вдоль глухих наружных стен по возможности ближе к наружному углу. При применении стояковых систем отопления стояки нужно размещать в углах помещения, особенно важно разместить стояки в наружных углах угловых комнат. Дело здесь в том, что наружные углы домов подвергаются атаке холодного воздуха, в отличие от стен, с двух сторон. Разместив отопительные стояки в углах, вы обеспечиваете их прогрев с внутренней стороны и резко снижаете вероятность отсыревания и почернения материала стен — развития в углах грибковых порослей.

Отопительные приборы размещают так, чтобы были обеспечены их осмотр, очистка и ремонт. Если применяется ограждение (экран) или декорирование приборов, то в расчет тепловой мощности радиаторов нужно внести коррективы. Мощность приобретаемых радиаторов должна быть рассчитана с поправочным коэффициентом (рис. 83).

рис.83. Изменение мощности теплоотдачи радиаторов в зависимости от способа их установки

Присоединение труб к радиаторам может быть с одной стороны (одностороннее) и с противоположных сторон (разностороннее). При присоединении труб с разных сторон возрастает теплопередача приборов, однако конструктивно рациональнее делать одностороннее присоединение труб. С разных сторон присоединяют радиаторы при числе секций более 20, а также при числе приборов «на сцепке» более одного.

Тепловой поток радиаторов зависит от расположения мест подачи и отвода из них теплоносителя. Теплопередача возрастает при подаче теплоносителя в верхнюю часть и отводе его из нижней части прибора (направление движения сверху вниз) и понижается при направлении движения снизу вверх (рис. 84). При установке отопительных приборов в несколько ярусов по высоте (по этажам) рекомендуется обеспечивать последовательное движение теплоносителя сверху вниз.

рис.84. Изменение мощности теплоотдачи радиаторов в зависимости от способа присоединения к ним труб

Индивидуальное регулирование теплопередачи отопительных приборов может быть ручным и автоматическим. Термостатные вентили регулируют пропуск теплоносителя таким образом, что достигают наилучших показателей теплообмена на всех участках теплового прибора.

Ссылка на основную публикацию
Adblock
detector